Search results for " Thermal insulation"
showing 3 items of 3 documents
Reducing electric and thermal energy needs in buildings by using innovative envelope materials - Laboratory results of bio-composites embodying tomat…
2018
The life style of building occupants is continuously arising towards conditions that are more comfortable involving, on turn, the growing of the electric energy consumptions for climatization purposes. This calls for the improvement of the efficiencies of equipment along with environmental performance of building materials. Laboratory analyses of samples of mixed materials, utilizing tomato stems harvested in Sicily and Cataluña, have been conducted Thermal conductance and mechanical properties have been detected for different rates of bio-component and inert materials. First results of the thermal properties seem to situate such bio-composites among the insulating building materials, for a…
Investigation on a Bio-Composite Material as Acoustic Absorber and Thermal Insulation
2020
In order to limit the anthropic emissions of CO2, research is currently investigating new materials for the building sector. The main purpose is the reduction in the embodied energy consumption, especially in the residential sector, and consequently the limitation of the direct and indirect utilization of fossil fuels, for the indoor heating, cooling, and ventilation services. Indeed, the residential sector is affected by a high energy demand, thus the choice of improved materials is fundamental to improve the sustainability. All phases: construction, building life, and dismantling are impacting in terms of resource and energy consumption, both associated with the emissions of pollutants in…
Life Cycle Energy and Environmental Assessment of the Thermal Insulation Improvement in Residential Buildings
2021
The refurbishment of the building stock is a key strategy towards the achievement of the climate and energy goals of the European Union. This study aims at evaluating the energy and environmental impacts associated with retrofitting a residential apartment to improve its vertical envelope thermal insulation. Two insulation materials, stone wool and cellulose fibers, are compared. The life cycle assessment methodology is applied assuming 1 m2 of retrofitted vertical envelope as functional unit. Moreover, to estimate the net energy and environmental benefits achievable in the retrofitted scenario compared with the non-retrofitted one, a second analysis is performed in which the system boundar…